Начертательная геометрия и машиностроительное черчение

Физика
Оптоэлектроника
Полупроводниковый лазер
Волоконно-оптический световод
Электронно-дырочный переход
Изучение законов внешнего фотоэффекта
Электротехника
Общая электротехника
Лабораторные работы
Расчет выпрямителей
Однофазный переменный ток
Трехфазные цепи
Машины постоянного и переменного тока
Трансформаторы и выпрямители
Электроника
Теория электросвязи
История искусства
Живопись
Фотография
Скульптура и архитектура
Энергетика
Экология
Мировые тенденции в сфере энергетике
Нетрадиционные виды энергетики
Солнечная коллектор
Обзор зарубежного опыта строительства
АЭС
Реакторная установка БН-600
Экологические проблемы гидроэнергетики
Экологические преимущества атомной
энергетики
Воздействие радиации на ткани живого
организма
Пути воздействия радиоактивных отходов
АЭС на человека
Альтернативные технологии
Альтернативой ядерной энергетики
Наиболее мощной в мире АЭС является
Kashiwazaki Kariva (Япония)
Термоядерная энергия
Конструкция реакторной установки
БРЕСТ-1200
Химические аккумуляторы
Реакторы на быстрых нейтронах
Нанопористые материалы
Космические материалы атомной отрасли
Машиностроение для энергетики
Радиологические лечебные технологии
Создание отраслевой электронной библиотеки
Подготовка руководителей и специалистов
Аппаратура систем контроля и управления
Неразрушающий контроль
Математика

Курс лекций по математике

Метод Гаусса решения систем
линейных уравнений

Элементы теории матриц

Приведем примеры перемножения
матриц
Определители
Вычисление обратной матрицы
Дифференциальное и интегральное
исчисление
Производная
Дифференциал функции
Неопределенный интеграл
Формула интегрирования по частям
Определенный интеграл
Производная по направлению
Экстремум функции двух переменных
Дифференциальные уравнения
первого порядка
Решить уравнение

Условие самоторможения в резьбе

Условие самоторможения можно записать в виде Тотв > 0. Рассматривая самоторможение только в резьбе без учета трения на торце гайки, получим  или

.                                                                       (6)

Для крепежных резьб значение угла подъема  лежит в пределах 2°30' – 3°30', а угол трения  изменяется в пределах 6° (при ) – 16º (при ). Таким образом, все крепежные резьбы – самотормозящие. Резьбы для ходовых винтов выполняют как самотормозящие, так и несамотормозящие.

Приведенные выше значения коэффициента трения, свидетельствующие о существенных запасах самоторможения, справедливы только при статических нагрузках. При динамических и вибрационных нагрузках вследствие взаимных микросмещений поверхностей трения коэффициент трения существенно снижается и условие самоторможения нарушается. Происходит самоотвинчивание во избежание которого применяют специальные стопорные устройства (см. способы стопорения резьбовых соединений).

КПД винтовой пары

КПД винтовой пары  определяется отношением работы, затраченной на завинчивание гайки без учета трения, к той же работе с учетом трения. Работа завинчивания равна произведению момента завинчивания на угол поворота гайки. Так как углы поворота равны и в том и в другом случае, то отношение работ равно отношению моментов , в котором  определяется по формуле, а  – по той же формуле, но при  и :

.           (7)

Учитывая потери только в резьбе (fТ = 0), найдем КПД только винтовой пары:

         .                                               (8)

Формула (8) позволяет сделать вывод, что  возрастает с увеличением  и уменьшением .

Виды повреждений резьбовых соединений

- Разрыв стержня по резьбе или по переходному сечению.

- Повреждение или разрушение резьбы (смятие и износ, срез, изгиб).

- Разрушение у головки.

Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении

Замечено, что выход из строя болтов, винтов, шпилек и т. п. обычно происходит вследствие разрыва (или вытяжки) их стержня (рис. 34) по резьбе или переходному сечению у головки. Вследствие разрушения или повреждений резьбы резьбовые изделия выбывают из строя реже.

Рис. 34. Деформация болта при работе

Для обеспечения прочности резьбовых соединений для болта определяют диаметр ds в его опасном сечении (в дальнейшем для краткости под словом «болт» будем подразумевать и другие резьбовые изделия: винты, шпильки, стержни с резьбой и т. п.). Затем определяют его остальные размеры. Размеры болта, гайки, шайбы принимают в зависимости от диаметра резьбы по соответствующим ГОСТам.

Расчет незатянутого болта, нагруженного внешней растягивающей силой.    

Этот случай встречается редко. Примером служит нарезанный участок крюка для подвешивания груза. Опасным бывает сечение, ослабленное резьбой. На рис. 35 показан пример такого резьбового соединения. Стержень крюка работает только на растяжение. Резьбовое соединение, рассматриваемое в данном случае, называют ненапряженным.

Рис.35. Грузовой крюк с обоймой

Проверочный расчет ненапряженного болтового соединения. Условие прочности на растяжение:

                                                                        (9)

где  и  — соответственно расчетное и допускаемое напряжения растяжения в поперечном сечении нарезанной части болта; F — растягивающая сила; d1— внутренний диаметр резьбы болта.

Проектировочный расчет ненапряженного болтового соединения сводится к определению внутреннего диаметра резьбы d, из условия прочности (9):

                                                     (10)

где  — допускаемое напряжение на растяжение;  — предел текучести материала болта;   — допускаемый коэффициент запаса прочности. Для болтов из углеродистой стали принимают . Большие значения коэффициента запаса принимают при невысокой точности определения величины нагрузки F или для конструкций повышенной ответственности.

Расчет затянутого болта, ненагруженного внешней осевой силой.

Болт испытывает растяжение и кручение только от затяжки. Требуемую силу затяжки болта определяют в зависимости от характера нагружения резьбового соединения. В машиностроении такие болтовые соединения встречаются в клеммовых соединениях (рис.36), в креплениях люков, крышек и т. п. В таких соединениях стержень болта растягивается силой затяжки F3

Рис. 36. Клеммовое соединение

Проверочный расчет производят по  — эквивалентному (приведенному) напряжению для опасной точки.

Условие прочности

.                                                                                            (11)

Эквивалентное напряжение определяем по гипотезе энергии формоизменения:

                         (12)

Для резьбы

                                                                                            (13)

                                                                            (14)

где  — напряжение растяжения в опасном сечении болта; — наибольшее напряжение кручения; d1 — внутренний диаметр резьбы;  — коэффициент затяжки, учитывающий скручивание стержня болта.

Проектировочный расчет затянутого болта, ненагруженного осевой силой. С учетом формул (13) и (14) внутренний диаметр резьбы болта

                                                               (15)

— допускаемое напряжение для болта.

Практикой установлено, что болты с резьбой, меньше М10, можно повредить при недостаточно квалифицированной затяжке. Поэтому в силовых соединениях не рекомендуют применять болты малых диаметров (меньше М8). На некоторых производствах для затяжки болтов используют специальные ключи предельного момента. Эти ключи не позволяют приложить при затяжке момент, больше установленного.

На главную