Электротехника конспекты и примеры решения задач

Физика
Оптоэлектроника
Полупроводниковый лазер
Волоконно-оптический световод
Электронно-дырочный переход
Изучение законов внешнего фотоэффекта
Электротехника
Общая электротехника
Лабораторные работы
Расчет выпрямителей
Однофазный переменный ток
Трехфазные цепи
Машины постоянного и переменного тока
Трансформаторы и выпрямители
Электроника
Теория электросвязи
Графика
Начертательная геометрия
Машиностроительное черчение
Расчетно-графическая работа по черчению
Системы автоматизированного
проектирования (САПР)
История искусства
Живопись
Фотография
Скульптура и архитектура
Энергетика
Экология
Мировые тенденции в сфере энергетике
Нетрадиционные виды энергетики
Солнечная коллектор
Обзор зарубежного опыта строительства
АЭС
Реакторная установка БН-600
Экологические проблемы гидроэнергетики
Экологические преимущества атомной
энергетики
Воздействие радиации на ткани живого
организма
Пути воздействия радиоактивных отходов
АЭС на человека
Альтернативные технологии
Альтернативой ядерной энергетики
Наиболее мощной в мире АЭС является
Kashiwazaki Kariva (Япония)
Термоядерная энергия
Конструкция реакторной установки
БРЕСТ-1200
Химические аккумуляторы
Реакторы на быстрых нейтронах
Нанопористые материалы
Космические материалы атомной отрасли
Машиностроение для энергетики
Радиологические лечебные технологии
Создание отраслевой электронной библиотеки
Подготовка руководителей и специалистов
Аппаратура систем контроля и управления
Неразрушающий контроль
Математика

Курс лекций по математике

Метод Гаусса решения систем
линейных уравнений

Элементы теории матриц

Приведем примеры перемножения
матриц
Определители
Вычисление обратной матрицы
Дифференциальное и интегральное
исчисление
Производная
Дифференциал функции
Неопределенный интеграл
Формула интегрирования по частям
Определенный интеграл
Производная по направлению
Экстремум функции двух переменных
Дифференциальные уравнения
первого порядка
Решить уравнение

ЦЕПИ ПЕРЕМЕННОГО ТОКА

Теоретические положения

1. Синусоидальные токи, напряжения и ЭДС.

В линейной электрической цепи при действии периодических ЭДС с одинаковым периодом Т, спустя достаточно большой промежуток времени от начала действия этих ЭДС, устанавливаются во всех участках цепи периодические токи и напряжения с тем же периодом Т. Величина  является частотой ЭДС, тока или напряжения. Частота численно равна числу периодов в единицу времени и измеряется в герцах (Гц).

Наибольший интерес представляют периодические синусоидальные токи, напряжения и ЭДС:

 (2.1)

Величины e, u, i называют мгновенными значениями. Их наибольшие значения Em, Um, Im называют амплитудными значениями. Величину  называют угловой частотой. Аргумент синуса называют фазой, величины ψe, ψu, ψi – начальной фазой.

2. Действующие и средние значения синусоидальных величин:

.

 
 (2.2)

3. Изображение синусоидальной функции комплексным числом.

В курсе теории линейных электрических цепей используются следующие формы записи комплексного числа:

алгебраическая ;

показательная ; (2.3)

тригонометрическая ,

здесь  – модуль комплексного числа;

 – аргумент комплексного числа;

 – действительная часть комплексного числа;

 – мнимая часть комплексного числа.

Алгебраическая форма удобна при сложении и вычитании комплексных чисел, а показательная – при умножении, делении, возведении в степень, извлечении корня.

4. Комплексные выражения синусоидальной функции времени, ее производной и интеграла приведены в табл. 2.1.

Соответствующие комплексные амплитуды запишем так:

.

 
 (2.4)

Таблица 2.1

Временная и комплексная записи

Функция

Производная функции

Интеграл от функции

Запись во временной области

Комплексная функция

времени

Комплексная амплитуда

Комплексное действующее значение

Согласно ГОСТу любое комплексное значение обозначается соответствующей буквой с чертой под ней, например , . Однако для величин, изменяющихся с течением времени синусоидально, разрешается комплексные величины обозначать с точкой над соответствующей буквой, таковы , напряжение , ток . Так что такие записи эквивалентны: , , .

5. Пассивные элементы электрической цепи (табл. 2.2).

Пассивный элемент электрической цепи определяется своим комплексным сопротивлением  – комплексным числом, равным отношению комплексного напряжения на зажимах данного элемента к комплексному току этого элемента:

. (2.5)

В табл. 2.2 приведены пассивные элементы, их изображения и обозначения.

6. Законы Кирхгофа.

 (2.6)

7. Комплексная мощность.

, (2.7)

где  – полная мощность;

 – активная мощность;

 – реактивная мощность;

 – сопряженный комплекс тока.

Баланс мощностей

. (2.8)

На главную