Электротехника конспекты и примеры решения задач

Физика
Оптоэлектроника
Полупроводниковый лазер
Волоконно-оптический световод
Электронно-дырочный переход
Изучение законов внешнего фотоэффекта
Электротехника
Общая электротехника
Лабораторные работы
Расчет выпрямителей
Однофазный переменный ток
Трехфазные цепи
Машины постоянного и переменного тока
Трансформаторы и выпрямители
Электроника
Теория электросвязи
Графика
Начертательная геометрия
Машиностроительное черчение
Расчетно-графическая работа по черчению
Системы автоматизированного
проектирования (САПР)
История искусства
Живопись
Фотография
Скульптура и архитектура
Энергетика
Экология
Мировые тенденции в сфере энергетике
Нетрадиционные виды энергетики
Солнечная коллектор
Обзор зарубежного опыта строительства
АЭС
Реакторная установка БН-600
Экологические проблемы гидроэнергетики
Экологические преимущества атомной
энергетики
Воздействие радиации на ткани живого
организма
Пути воздействия радиоактивных отходов
АЭС на человека
Альтернативные технологии
Альтернативой ядерной энергетики
Наиболее мощной в мире АЭС является
Kashiwazaki Kariva (Япония)
Термоядерная энергия
Конструкция реакторной установки
БРЕСТ-1200
Химические аккумуляторы
Реакторы на быстрых нейтронах
Нанопористые материалы
Космические материалы атомной отрасли
Машиностроение для энергетики
Радиологические лечебные технологии
Создание отраслевой электронной библиотеки
Подготовка руководителей и специалистов
Аппаратура систем контроля и управления
Неразрушающий контроль
Математика

Курс лекций по математике

Метод Гаусса решения систем
линейных уравнений

Элементы теории матриц

Приведем примеры перемножения
матриц
Определители
Вычисление обратной матрицы
Дифференциальное и интегральное
исчисление
Производная
Дифференциал функции
Неопределенный интеграл
Формула интегрирования по частям
Определенный интеграл
Производная по направлению
Экстремум функции двух переменных
Дифференциальные уравнения
первого порядка
Решить уравнение

Эквивалентные преобразования схем.

Во всех случаях преобразования замена одних схем другими, им эквивалентными, не должна привести к изменению токов или напряжений на участках цепи, не подвергшихся преобразованию.

Сопротивления соединены последовательно, если они обтекаются одним и тем же током. Эквивалентное сопротивление цепи, состоящей из n последовательно соединенных сопротивлений, равно сумме этих сопротивлений:

. (1.9)

При последовательном соединении n сопротивлений напряжения на них распределяются прямо пропорционально этим сопротивлениям:

. (1.10)

Сопротивления соединены параллельно, если все они присоединены к одной паре узлов (рис. 1.4а).


Эквивалентное сопротивление цепи, состоящей из n параллельно соединенных сопротивлений (рис. 1.4а), рассчитывается по формуле

 или . (1.11)

В частном случае параллельного соединения двух сопротивлений R1 и R2 эквивалентное сопротивление

, (1.12)

при трех сопротивлениях

. (1.13)

При параллельном соединении n сопротивлений (рис. 1.4а) токи в них распределяются обратно пропорционально их сопротивлениям или прямо пропорционально их проводимостям:

. (1.14)

Замена смешанного соединения сопротивлений одним эквивалентным.

На рис. 1.4б приведена схема смешанного соединения. Их эквивалентное сопротивление

. (1.15)


Соединение трех сопротивлений, имеющее вид трехлучевой звезды (рис. 1.5а), называют соединением звезда, а соединение трех сопротивлений так, что они образуют собой стороны треугольника (рис. 1.5б) – соединением треугольник.


Формулы преобразования имеют следующий вид:

  (1.16)

Замена нескольких соединенных параллельно источников ЭДС одним эквивалентным. Если имеется несколько источников ЭДС Е1, Е2, ... , Еn с внутренними сопротивлениями R1, R2, ..., Rn, работающих параллельно на общее сопротивление нагрузки R (рис. 1.6а), то они могут быть заменены одним эквивалентным источником ЭДС с внутренним сопротивлением Rэк (рис. 1.6б).


При этом

 (1.17)


Ток в сопротивлении R

. (1.18)

Токи в каждой из ветвей

, (1.19)

где .

Замена параллельно соединенных источников тока одним эквивалентным. Если несколько источников тока с токами J1, J2, ..., Jn и внутренними проводимостями G1, G2, ..., Gn соединены параллельно (рис. 1.7а), то их можно заменить одним эквивалентным источником тока (рис. 1.7б), ток которого Jэк равен алгебраической сумме токов, а его внутренняя проводимость Gэк равна сумме проводимостей отдельных источников.

 (1.20)


5. Баланс мощностей.

Для любой замкнутой электрической цепи сумма мощностей Ри, развиваемых источниками электрической энергии, равна сумме мощностей Рn, расходуемых в приемниках энергии:

 (1.21)

где  – алгебраическая сумма; здесь положительны те слагаемые, для которых направления действия ЭДС Ek и соответствующего тока Ik совпадают, в противном случае слагаемое отрицательно;

 – алгебраическая сумма; здесь положительны те из слагаемых, для которых напряжение на источнике тока (оно определяется расчетом внешней цепи по отношению к зажимам источника тока) и его ток Ik совпадают по направлению (как, например, на рис. 1.1г), в противном случае слагаемое отрицательное;

 – алгебраическая сумма; здесь должны быть учтены как внешние сопротивления, так и сопротивления самих источников энергии.

6. Потенциальная диаграмма.

Под потенциальной диаграммой понимают график распределения потенциала вдоль какого-либо участка цепи или замкнутого контура. По оси абсцисс на нем откладывают сопротивления вдоль контура, начиная с какой-либо произвольной точки, по оси ординат – потенциалы.

Каждой точке участка цепи или замкнутого контура соответствует своя точка на потенциальной диаграмме.

На главную