http://domovenka.ru/tovary-dla-detey/nedorogaya-detskaya-obuv/
Метод Гаусса Матрица Определители Дифференциальное и интегральное исчисление Производная Дифференциал функции Неопределенный интеграл Формула интегрирования по частям Определенный интеграл Производная по направлению

Курс лекций по математике: линейная алгебра, дифференциальное и интегральное исчисление

Дифференциальное и интегральное исчисление функции одной переменной

Основные понятия

Пусть D — некоторое множество чисел. Если задан закон, по которому каждому числу x из множества D ставится в соответствие единственное определенное число y, то будем говорить, что на множестве D задана функция, которую назовём f. Число y — это значение функции f в точке x, что обозначается формулой y = f(x).

Число x называется аргументом функции, множество D—областью определения функции, а все значения y образуют множество E, которое называется множеством значений или областью изменения функции.

Функция f называется возрастающей (убывающей) на множестве G, если для любых чисел х1 и х2 из множества G, таких что x1<x2, выполняется условие f(x1)<f(x2) (f(x1)>f(x2)).

Так как между множеством действительных чисел и множеством точек числовой оси можно установить взаимно-однозначное соответствие, в дальнейшем изложении понятиям “число х” и “точка х числовой оси” в некоторых случаях будет придаваться один и тот же смысл. Например, вместо “значение функции при значении аргумента, равном х1” будет говориться “значение функции в точке х1”. В нижеследующем опре­делении можно везде заменить выражение “точка х” на выражение “числох”.

Пусть e — некоторое положительное число. e-окрестностью точки x0 называется множество всех точек x, принадлежащих промежутку (x0‑e,x0+e), кроме самой точки x0. Принадлежность точки x e‑окрестности точки  можно выразить с помощью двойного неравенства

0<êx–x0ç<e.

Число e называется радиусом окрестности.

Предел и непрерывность функции Рассмотрим функцию y=x2 в точке x0=2.

Значение функции в этой точке равно 4. Число A называется пределом функции y=f(x) в точке x0 (иногда говорят, при x, стремящемся кx0), если для любого положительного числа e можно найти такое положительное число d, что для всех x из d-окрестности точки x0 соответствующие значения y попадают в e-окрестность точки y=A.

Приведем свойства предела функции .


Дифференциальные уравнения первого порядка