Курс лекций по математике: линейная алгебра, дифференциальное и интегральное исчисление

Физика
Оптоэлектроника
Полупроводниковый лазер
Волоконно-оптический световод
Электронно-дырочный переход
Изучение законов внешнего фотоэффекта
Электротехника
Общая электротехника
Лабораторные работы
Расчет выпрямителей
Однофазный переменный ток
Трехфазные цепи
Машины постоянного и переменного тока
Трансформаторы и выпрямители
Электроника
Теория электросвязи
Графика
Начертательная геометрия
Машиностроительное черчение
Расчетно-графическая работа по черчению
Системы автоматизированного
проектирования (САПР)
История искусства
Живопись
Фотография
Скульптура и архитектура
Энергетика
Экология
Мировые тенденции в сфере энергетике
Нетрадиционные виды энергетики
Солнечная коллектор
Обзор зарубежного опыта строительства
АЭС
Реакторная установка БН-600
Экологические проблемы гидроэнергетики
Экологические преимущества атомной
энергетики
Воздействие радиации на ткани живого
организма
Пути воздействия радиоактивных отходов
АЭС на человека
Альтернативные технологии
Альтернативой ядерной энергетики
Наиболее мощной в мире АЭС является
Kashiwazaki Kariva (Япония)
Термоядерная энергия
Конструкция реакторной установки
БРЕСТ-1200
Химические аккумуляторы
Реакторы на быстрых нейтронах
Нанопористые материалы
Космические материалы атомной отрасли
Машиностроение для энергетики
Радиологические лечебные технологии
Создание отраслевой электронной библиотеки
Подготовка руководителей и специалистов
Аппаратура систем контроля и управления
Неразрушающий контроль
Математика

Курс лекций по математике

Метод Гаусса решения систем
линейных уравнений

Элементы теории матриц

Приведем примеры перемножения
матриц
Определители
Вычисление обратной матрицы
Дифференциальное и интегральное
исчисление
Производная
Дифференциал функции
Неопределенный интеграл
Формула интегрирования по частям
Определенный интеграл
Производная по направлению
Экстремум функции двух переменных
Дифференциальные уравнения
первого порядка
Решить уравнение

Метод Гаусса решения систем линейных уравнений

Элементы теории матриц

Приведем примеры перемножения матриц

Определители Рассмотрим систему двух линейных уравнений с двумя неизвестными в общем виде

Вычисление обратной матрицы

Дифференциальное и интегральное исчисление функции одной переменной Пусть D — некоторое множество чисел. Если задан закон, по которому каждому числу x из множества D ставится в соответствие единственное определенное число y, то будем говорить, что на множестве D задана функция, которую назовём f. Число y — это значение функции f в точке x, что обозначается формулой y = f(x).

Производная

Дифференциал функции

Неопределенный интеграл. Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех xÎ(a;b) выполняется равенство F¢(x)=f(x).

Формула интегрирования по частям Пусть u(x) и v(x) — дифференцируемые на некотором промежутке функции. Тогда (uv)¢=u¢v+v¢u

Определенный интеграл Пусть на промежутке [a;b] задана функция f(x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [a;b] произвольные числа x1,x2,x3,¼,xn-1, удовлетворяющие условию:
a< x1,< x2<¼< xn-1,<b.

Производная по направлению. Пусть в плоскости XOY расположена точка M0(x0,y0). Зададим произвольный угол a и рассмотрим множество точек на той же плоскости, координаты которых определяются из формул x=x0+tcosa, y=y0+tsina.

Экстремум функции двух переменных. Точка M0(x0,y0) является точкой максимума (минимума) функции z=f(x,y), если найдется такая окрестность точки M0, что для всех точек M(x,y) из этой окрестности выполняется неравенство f(x,y)<f(x0,y0) (f(x,y)> f(x0,y0)). Точки максимума и минимума называются точками экстремума.

Дифференциальные уравнения первого порядка Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения входят не только сами функции, но и их производные. Если производные, входящие в уравнение, берутся только по одной переменной, то дифференциальное уравнение называется обыкновенным. Если в уравнении встречаются производные по нескольким переменным, то уравнение называется уравнением в частных производных. Мы будем рассматривать лишь обыкновенные дифференциальные уравнения.

Пример. Решить уравнение  при начальном условии y(1)=2. (Заметим, что в данном случае нельзя задавать начальное условие при x=0, так как это значение не принадлежит области B определения функции F

На главную