Мировые тенденции в сфере энергетике Нетрадиционные виды энергетики Солнечная коллектор Обзор зарубежного опыта строительства АЭС Реакторная установка БН-600 Экологические проблемы гидроэнергетики Атомная энергетика

Экологические проблемы энергетики

Реакторная установка БН-600 надежно работает с 1980 г. в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция (табл.1).

Белоярская АЭС с реактором БН-600

Таблица 1. Коммерческие быстрые реакторы

Характеристика

БН-600

(Россия)

Super-Phenix-I*
(Франция)

Проекты

БН-800** (Россия)

БН-1800 (Россия)

Super-Phenix-II

(Франция)

CDFR (Англия)

Электрическая мощность, МВт

600

1200

880

1800

1500

1300

Тепловая мощность, МВт

1470

3000

2100

4000

-

3230

Температура теплоносителя на выходе из реактора, ºС

550

540

547

575

545

540

Давление пара, МПа

14,0

18,0

14,0

250

18,0

16,0

Температура пара, ºС

500

490

490

525

490

490

Коэффициент воспроизводства

1,3

1,18

1,0-1,35

~1,0

1,15

1,25

* Остановлен.

** Строится на Белоярской АЭС.

 

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при нормальной работе, так и при различных аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключения недопустимых воздействий на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных защитных систем, использования локализующих систем, ограничивающих последствия потенциально возможных аварий.

Самозащищенность реактора основана, в первую очередь, на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при отклонениях температуры и мощности реактора, а также – на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Натрий  имеет высокую температуру кипения (883ºС при нормальных физических условиях), что позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам и коррозионному воздействию теплоносителя, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. В то же время реализация такой аварии в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен равнопрочным герметичным страховочным кожухом, а объем возможной утечки натрия в этот кожух незначителен. Разгерметизация трубопроводов любого размера в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Благодаря значительной теплоемкости теплоносителя, находящегося в реакторе, рост средней температуры натрия в реакторе в случае полного прекращения отвода тепла в пароводяной контур не превышает 30 градусов в час. С учетом значительного запаса до температуры кипения натрия это дает резерв времени, достаточный для принятия мер по ограничению последствий подобной маловероятной аварии.

В современном проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, реализованы дополнительные конструктивные решения, обеспечивающие сохранение герметичности реактора и исключение недопустимого воздействия на окружающую среду, даже при постулированной маловероятной аварии с расплавлением активной зоны реактора.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было аварий со сверхнормативными выбросами радиоактивности, переоблучением персонала и, тем более, местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, они легко управляются. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует такой его недостаток, как пожароопасность. Утечки и горение натрия уверенно обнаруживаются, а их последствия надежно локализуются. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства пассивного принципа действия, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии извне.

Технико-экономические показатели быстрых реакторов. Особенности натриевой технологии, дополнительные меры безопасности, консервативный выбор проектных решений первых реакторов БН-350 и БН-600 стали причинами повышенной их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако главной задачей создания первых быстрых реакторов было представительное подтверждение их работоспособности, безопасности и надежности. Эта задача и была решена созданием и успешной эксплуатацией указанных реакторов. При создании следующей реакторной установки БН-800 для энергоблока, рассматривавшегося в качестве серийного для массового использования в атомной энергетике, ее технико-экономическим характеристикам было уделено более пристальное внимание. В результате удалось существенно сблизиться по удельным капитальным затратам с основным типом реакторов, используемых в современной атомной энергетике России, – ВВЭР-1000.

рия, 6 - рекуператор, 7 - насос второго контура, 8 - буферная емкость, 9 - парогенератор, 10 - питательный насос, 11 - деаэратор, 12 - конденсатный насос, 13 - конденсатор, 14 - турбогенератор, 15 - турбина.

Полученные результаты показали, что теплопроводность образцов МЯТ с имитацией выгорания 8,5 ат.% снижается на 23% при 700К и на 3% при 1850К по отношению к диоксиду урана без добавок. Введение ВПН Er 0,6%, Gd 4% и Gd 15% приводит к еще большему снижению теплопроводности на 32, 48 и 61% при температуре 700К и на 3, 7 и 23% при 1850К соответственно.

Реакторы на быстрых нейтронах и их роль в становлении «большой» атомной энергетики Потребление энергии – важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века, когда потребление энергии в мире увеличилось почти в 15 раз, достигнув к концу прошлого столетия абсолютной величины около 9,5 млрд. тонн нефтяного эквивалента (т.н.э.).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей, как то: высокая энергонапряженность топлива, необходимость обеспечения его интенсивного охлаждения, высокий уровень рабочих температур теплоносителя и элементов конструкции реактора и оборудования, большие потоки быстрых нейтронов и вызванные ими радиационные повреждения конструкционных материалов и др. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, Франции, Великобритании и Германии.

Проблема достижения конкурентоспособности быстрых реакторов в современных условиях выходит на первый план. К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал технико-экономического совершенствования. Определены основные направления улучшения их экономических характеристик при одновременном повышении уровня безопасности.


Конструкция реакторной установки БРЕСТ-1200